13 research outputs found

    Implementing frequency-warping and vtln through linear transformation of conventional mfcc

    No full text
    In this paper, we show that frequency-warping (including VTLN) can be implemented through linear transformation of conventional MFCC. Unlike the Pitz-Ney [1] continuous domain approach, we directly determine the relation between frequency-warping and the linear-transformation in the discrete-domain. The advantage of such an approach is that it can be applied to any frequency-warping and is not limited to cases where an analytical closed-form solution can be found. The proposed method exploits the bandlimited interpolation idea (in the frequency-domain) to do the necessary frequency-warping and yields exact results as long as the cepstral coefficients are que-frency limited. This idea of quefrencylimitedness shows the importance of the filter-bank smoothing of the spectra which has been ignored in [1, 2]. Furthermore, unlike [1], since we operate in the discrete domain, we can also apply the usual discrete-cosine transform (i.e. DCT-II) on the logarithm of the filter-bank output to get conventional MFCC features. Therefore, using our proposed method, we can linearly transform conventional MFCC cepstra to do VTLN and we do not require any recomputation of the warped-features. We provide experimental results in support of this approach. 1

    A quality control model that uses PTV-rectal distances to predict the lowest achievable rectum dose, improves IMRT planning for patients with prostate cancer

    No full text
    Background and purpose: To predict the lowest achievable rectum 035 for quality assurance of IMRT plans of prostate cancer patients. Materials and methods: For each of 24 patients from a database of 47 previously treated patients, the anatomy was compared to the anatomies of the other 46 to predict the minimal achievable rectum D35. The 24 patients were then replanned to obtain maximally reduced rectum D35. Next, the newly derived plans were added to the database to replace the original clinical plans, and new predictions of the lowest achievable rectum D35 were made. Results: After replanning, the rectum D35 reduced by 9.3 Gy +/- 6.1 (average +/- 1 SD; p < 0.001) compared to the original plan. The first predictions of the rectum D35 were 4.8 Gy +/- 4.2 (average +/- 1 SD; p < 0.001) too high when evaluated with the new plans. After updating the database, the replanned and newly predicted rectum D35 agreed within 0.1 Gy +/- 2.8 (average +/- 1 SD; p = 0.89). The doses to the bladder, anus and femoral heads did not increase compared to the original plans. Conclusions: For individual prostate patients, the lowest achievable rectum D35 in IMRT planning can be accurately predicted from dose distributions of previously treated patients by quantitative comparison of patient anatomies. These predictions can be used to quantitatively assess the quality of IMRT plans. (c) 2013 Elsevier Ireland Ltd. All rights reserved

    Impact of interfractional target motion in locally advanced cervical cancer patients treated with spot scanning proton therapy using an internal target volume strategy

    Get PDF
    Background and purpose: The more localized dose deposition of proton therapy (PT) compared to photon therapy might allow a reduction in treatment-related side effects but induces additional challenges to address. The aim of this study was to evaluate the impact of interfractional motion on the target and organs at risk (OARs) in cervical cancer patients treated with spot scanning PT using an internal target volume (ITV) strategy. Methods and materials: For ten locally advanced cervical cancer patients, empty and full bladder planning computed tomography (pCT) as well as 25 daily cone beam CTs (CBCTs) were available. The Clinical Target Volume (CTV), the High Risk CTV (CTVHR) (gross tumor volume and whole cervix), the non-involved uterus as well as the OARs (bowel, bladder and rectum) were contoured on the daily CBCTs and transferred to the pCT through rigid bony match. Using synthetic CTs derived from pCTs, four-beam spot scanning PT plans were generated to target the patient-specific ITV with 45 Gy(RBE) in 25 fractions. This structure was defined based on pre-treatment MRI and CT to anticipate potential target motion throughout the treatment. D98% of the targets and V40Gy(RBE) of the OARs were extracted from the daily anatomies, accumulated and analyzed. In addition, the impact of bladder volume deviations from planning values on target and bowel dose was investigated. Results: The ITV strategy ensured a total accumulated dose >42.75 Gy(RBE) to the CTVHR for all ten patients. Two patients with large bladder-related uterus motion had accumulated dose to the non-involved uterus of 35.7 Gy(RBE) and 41.1 Gy(RBE). Variations in bowel V40Gy(RBE) were found to be correlated (Pearson r = −0.55; p-value <0.0001) with changes in bladder volume during treatment. Conclusion: The ITV concept ensured adequate dose to the CTVHR, but was insufficient for the non-involved uterus of patients subject to large target interfractional motion. CBCT monitoring and occasional replanning is recommended along the same lines as with photon radiotherapy in cervical cancer

    Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    No full text
    \u3cp\u3ePurpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. Results: The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. Conclusions: The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.\u3c/p\u3

    Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    No full text
    Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cance
    corecore